staypuft: object validation and
serialization

& should this even be a package?

Scott Chamberlain (W @sckottie)

'
‘,; JpensSci
g

https://twitter.com/sckottie

pain point: serialization
converting data in one format to another format

especially painful when complex

other languages have good ideas

marshmallow - a Python library

marshmallow

A lightweight library for converting complex objects to and from
simple Python datatypes.

https://github.com/marshmallow-code/marshmallow/

An example with marshmallow

from datetime import date
from marshmallow import Schema, fields, pprint

class ArtistSchema (Schema) :
name = fields.Str ()

class AlbumSchema (Schema) :

title = fields.Str ()
release date = fields.Date ()
artist = fields.Nested(ArtistSchema ())

bowie = dict (name='David Bowie')
album = dict(artist=bowie, title='Hunky Dory', release date=date (1971, 12, 17))

schema = AlbumSchema ()
result = schema.dump (album)

{ 'artist': {'name': 'David Bowie'},
id 'release date': '1971-12-17",
'title': '"Hunky Dory'}

album = dict(artist=bowie, title='Hunky Dory', release date="2020-04-14")
schema .dump (album)
ValidationError: {'release date': ['"2020-04-14" cannot be formatted as a date.']

back to R

similarartinR

. assertr (assertions for analysis pipeline)
. validate (very similar to assertr AFAICT)
. errorlocate (find errors in datasets)

. any others?

I/staypuft

¢) ropensc

https://github.com/ropensci/staypuft

An example with staypuft

library (staypuft)

MySchema <- SchemaS$Snew ("MySchema",
num = fields$integer (),
uuld = fieldsSuuid(),
foo = fieldsSboolean ()

~—

X <= list (num=5, uuid="9%9a5f6bba-4101-48e9-a7e3-b5acd4d56a04bb", foo=TRUE)

all good
MySchema$dump json (x)
#> {"name":["Jane Doe"],"title":["Howdy doody"],"num":[5.5],

invalid uuid

Z <—- X

zSuuid <- "foo-bar"

MySchemaSload (z)

#> Error: ValidationError: Not a wvalid UUID.

invalid boolean

w <—- X

wSfoo <- "stuff"

MySchema$load (x)

#> Error: ValidationError: Not a valid boolean.

Use case: convert each thing to an S3 class

z <- SchemaSnew ("ArtistSchema",
name = fieldsS$Scharacter (),
role = fields$character(data_key="foo_bar"),
post load = {
function (x) structure(x, class = "Artist")

I

unknown = "exclude"

)

print.Artist <- function(x) {
cat ("Artist\n")
cat (sprintf (" name/role: %s/%$s\n", x$name, x$role))

}

artists <- list(
list (name="David Bowie", foo bar="lead", instrument="voice"),
list (name="Michael Jackson", foo bar="lead", instrument="voice")
)
Jjson <- Jsonlite::toJSON(artists)
z$3load json(json, simplifyVector = FALSE, many = TRUE)

#> [[11]

#> Artist

#> name/role: David Bowie/lead
#>

#> [[2]]

#> Artist

#> name/role: Michael Jackson/lead

why?/use cases

. data validation: lots of potential users

. remote data sources can change: schemas help
validate and catch changes

. use in scripts (most researchers): help raise issues
with scripts as time goes on and data inputs change

. using R with plumbr or similar: convert data to
serve to APl or consume from API request bodies

To do

- Nested data works - but needs more testing

. Add more 'field' types: url, email, (domain specific
types)

. Add support for user-defined fields

. Probably add an easier to use interface, less R6'y

wait ...
should this even be a package
though?

When should | not make a pkg?

. the pkg doesn't solve actual use cases

- there's significant overlap with existing solutions
- and maintainers are responsive

. there's higher priority/lowering hanging fruit

Use cases

For staypuft, likely many users

Everyone deals with objects in R

& I'm not against sillyness

cowsay: Messages, Warnings, Strings with Ascii Animals

Allows printing of character strings as messages/warnings/etc. with ASCII animals, including cats, cows, frogs, chickens,
ghosts, and more.

Version: 08.0

Imports: crayon, fortunes, rmsfact

Suggests:
Published: 2020-02-06

Author: Scott Chamberlain [aut, cre], Amanda Dobbyn [aut], Tyler Rinker [ctb], Thomas Leeper [ctb], Noam Ross
[ctb], Rich FitzJohn [ctb], Carson Sievert [ctb], Kiyoko Gotanda [ctb], Andy Teucher [ctb], Karl Broman
[ctb], Franz-Sebastian Krah [ctb], Lucy D'Agostino McGowan [ctb], Guangchuang Yu [ctb], Philipp
Boersch-Supan [ctb], Andreas Brandmaier [ctb], Marion Louveaux [ctb]

elephant in the room ...

S4 e.g.

setClass ("BMI", representation(weight="numeric", size="numeric"))
new ("BMI", welght="Hello", size=1.84)
#> Error in validObject (.Object)

#>

#>
#>

invalid class “BMI” object: invalid object for slot "weight"

in class "BMI": got class "character",
should be or extend class "numeric"

But | think staypuft use cases are
sufficiently different

higher priority/lower hanging
fruit

. I've got many other packages

. Many of which have many users

- What if new package has a huge impact though?
- How would | know?

So...

staypuft future is unclear

if you're interested:
¢) ropensci/staypuft

I8 scotttalks.info/staypuft

https://github.com/ropensci/staypuft
https://scotttalks.info/staypuft/

