
staypu�: object validation and
serialization

& should this even be a package?

Scott Chamberlain ()@sckottie

https://twitter.com/sckottie

pain point: serialization
converting data in one format to another format

especially painful when complex

other languages have good ideas
marshmallow - a Python library

marshmallow

A lightweight library for converting complex objects to and from
simple Python datatypes.

https://github.com/marshmallow-code/marshmallow/

An example with marshmallow
from datetime import date
from marshmallow import Schema, fields, pprint

class ArtistSchema(Schema):
 name = fields.Str()

class AlbumSchema(Schema):
 title = fields.Str()
 release_date = fields.Date()
 artist = fields.Nested(ArtistSchema())

bowie = dict(name='David Bowie')
album = dict(artist=bowie, title='Hunky Dory', release_date=date(1971, 12, 17))

schema = AlbumSchema()
result = schema.dump(album)
{ 'artist': {'name': 'David Bowie'},
'release_date': '1971-12-17',
'title': 'Hunky Dory'}

album = dict(artist=bowie, title='Hunky Dory', release_date="2020-04-14")
schema.dump(album)
ValidationError: {'release_date': ['"2020-04-14" cannot be formatted as a date.']

back to R

similar art in R

assertr (assertions for analysis pipeline)
validate (very similar to assertr AFAICT)
errorlocate (find errors in datasets)

any others?

ropensci/staypu�

https://github.com/ropensci/staypuft

An example with staypu�
library(staypuft)
MySchema <- Schema$new("MySchema",
 num = fields$integer(),
 uuid = fields$uuid(),
 foo = fields$boolean()
)
x <- list(num=5, uuid="9a5f6bba-4101-48e9-a7e3-b5ac456a04b5", foo=TRUE)

all good
MySchema$dump_json(x)
#> {"name":["Jane Doe"],"title":["Howdy doody"],"num":[5.5], ...

invalid uuid
z <- x
z$uuid <- "foo-bar"
MySchema$load(z)
#> Error: ValidationError: Not a valid UUID.

invalid boolean
w <- x
w$foo <- "stuff"
MySchema$load(x)
#> Error: ValidationError: Not a valid boolean.

Use case: convert each thing to an S3 class
z <- Schema$new("ArtistSchema",
 name = fields$character(),
 role = fields$character(data_key="foo_bar"),
 post_load = {
 function(x) structure(x, class = "Artist")
 },
 unknown = "exclude"
)

print.Artist <- function(x) {
 cat("Artist\n")
 cat(sprintf(" name/role: %s/%s\n", x$name, x$role))
}

artists <- list(
 list(name="David Bowie", foo_bar="lead", instrument="voice"),
 list(name="Michael Jackson", foo_bar="lead", instrument="voice")
)
json <- jsonlite::toJSON(artists)
z$load_json(json, simplifyVector = FALSE, many = TRUE)
#> [[1]]
#> Artist
#> name/role: David Bowie/lead
#>
#> [[2]]
#> Artist
#> name/role: Michael Jackson/lead

why?/use cases

data validation: lots of potential users
remote data sources can change: schemas help
validate and catch changes
use in scripts (most researchers): help raise issues
with scripts as time goes on and data inputs change
using R with plumbr or similar: convert data to
serve to API or consume from API request bodies

To do

Nested data works - but needs more testing
Add more 'field' types: url, email, (domain specific
types)
Add support for user-defined fields
Probably add an easier to use interface, less R6'y

wait ...
should this even be a package

though?

When should I not make a pkg?

the pkg doesn't solve actual use cases
there's significant overlap with existing solutions

and maintainers are responsive
there's higher priority/lowering hanging fruit

Use cases
For staypuft, likely many users

Everyone deals with objects in R

& I'm not against sillyness

elephant in the room ...

't j t ki S4?

S4 e.g.

But I think staypu� use cases are
sufficiently different

setClass("BMI", representation(weight="numeric", size="numeric"))
new("BMI", weight="Hello", size=1.84)
#> Error in validObject(.Object) :
#> invalid class “BMI” object: invalid object for slot "weight"

#> in class "BMI": got class "character",
#> should be or extend class "numeric"

higher priority/lower hanging
fruit

I've got many other packages
Many of which have many users
What if new package has a huge impact though?

How would I know?

So...

staypu� future is unclear

if you're interested:

ropensci/staypu�
scotttalks.info/staypu�

https://github.com/ropensci/staypuft
https://scotttalks.info/staypuft/

