

Open Peer Review

Discuss this article

 (0)Comments

SOFTWARE TOOL ARTICLE

Taxa: An R package implementing data standards and methods
 for taxonomic data [version 1; referees: awaiting peer review]

Zachary S.L. Foster , Scott Chamberlain , Niklaus J. Grünwald 3

Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, 97331, USA
rOpenSci, University of California, Berkeley, CA, 94720, USA
Horticultural Crops Research Laboratory, USDA Agricultural Research Service, Corvallis, OR, 97330, USA

Abstract
The taxa R package provides a set of tools for defining and manipulating
taxonomic data. The recent and widespread application of DNA sequencing to
community composition studies is making large data sets with taxonomic
information commonplace. However, compared to typical tabular data, this
information is encoded in many different ways and the hierarchical nature of
taxonomic classifications makes it difficult to work with. There are many R
packages that use taxonomic data to varying degrees but there is currently no
cross-package standard for how this information is encoded and manipulated.
We developed the R package taxa to provide a robust and flexible solution to
storing and manipulating taxonomic data in R and any application-specific
information associated with it. Taxa provides parsers that can read common
sources of taxonomic information (taxon IDs, sequence IDs, taxon names, and
classifications) from nearly any format while preserving associated data. Once
parsed, the taxonomic data and any associated data can be manipulated using
a cohesive set of functions modeled after the popular R package dplyr. These
functions take into account the hierarchical nature of taxa and can modify the
taxonomy or associated data in such a way that both are kept in sync. Taxa is
currently being used by the metacoder and taxize packages, which provide
broadly useful functionality that we hope will speed adoption by users and
developers.

 This article is included in the gateway.RPackage

1 2 3

1

2

3

 Referee Status: AWAITING PEER
REVIEW

 05 Mar 2018, :272 (doi:)First published: 7 10.12688/f1000research.14013.1
 05 Mar 2018, :272 (doi:)Latest published: 7 10.12688/f1000research.14013.1

v1

Page 1 of 11

F1000Research 2018, 7:272 Last updated: 05 MAR 2018

https://f1000research.com/articles/7-272/v1
https://f1000research.com/articles/7-272/v1
https://orcid.org/0000-0003-1656-7602
https://f1000research.com/gateways/rpackage
https://f1000research.com/gateways/rpackage
http://dx.doi.org/10.12688/f1000research.14013.1
http://dx.doi.org/10.12688/f1000research.14013.1
http://crossmark.crossref.org/dialog/?doi=10.12688/f1000research.14013.1&domain=pdf&date_stamp=2018-03-05

 Niklaus J. Grünwald ()Corresponding author: grunwaln@oregonstate.edu
 : Conceptualization, Methodology, Resources, Software, Validation, Visualization, Writing – Original Draft Preparation,Author roles: Foster ZSL

Writing – Review & Editing; : Conceptualization, Methodology, Project Administration, Resources, Software, Validation, Writing –Chamberlain S
Original Draft Preparation, Writing – Review & Editing; : Conceptualization, Funding Acquisition, Methodology, ProjectGrünwald NJ
Administration, Resources, Supervision, Validation, Visualization, Writing – Original Draft Preparation, Writing – Review & Editing

 The authors have declared that no competing interests exist. The use of trade, firm, or corporation names in this publicationCompeting interests:
is for the information and convenience of the reader. Such use does not constitute an official endorsement or approval by the United States
Department of Agriculture or the Agricultural Research Service of any product or service to the exclusion of others that may be suitable.

 Foster ZSL, Chamberlain S and Grünwald NJ. How to cite this article: Taxa: An R package implementing data standards and methods for
 2018, :272 (doi:)taxonomic data [version 1; referees: awaiting peer review] F1000Research 7 10.12688/f1000research.14013.1

 © 2018 Foster ZSL . This is an open access article distributed under the terms of the ,Copyright: et al Creative Commons Attribution Licence
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

 This work was supported in part by funds from USDA Agricultural Research Service Projects 2027-22000-039-00 andGrant information:
2072-22000-039-15-S to NG.
The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

 05 Mar 2018, :272 (doi:) First published: 7 10.12688/f1000research.14013.1

Page 2 of 11

F1000Research 2018, 7:272 Last updated: 05 MAR 2018

http://dx.doi.org/10.12688/f1000research.14013.1
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.12688/f1000research.14013.1

Introduction
The R statistical computing language is rapidly becoming the lead-
ing tool for scientific data analysis in academic research programs
(https://stackoverflow.blog/2017/10/10/impressive-growth-r/).
R or its extensions were cited by almost 1% of all scien-
tific articles in 2014 according to Elsevier’s Scopus database.
For the agricultural and biological sciences, R was cited by
over 3% of articles (Tippmann, 2015). One of the reasons for
R’s popularity is how easy it is to develop and install exten-
sions called R packages. There are now more than 10,000 pack-
ages on the Comprehensive R Archive Network (CRAN), over
1,300 packages on Bioconductor (Gentleman et al., 2004),
and countless more on GitHub.

The recent increases in the affordability and effectiveness
of high-throughput sequencing has led to a large number of
ecological datasets of unprecedented size and complexity. The R
community has responded with the creation of numerous
packages for ecological data analysis and visualization, such
as vegan (Oksanen et al., 2013), phyloseq (McMurdie &
Holmes, 2013), taxize (Chamberlain & Szöcs, 2013), and
metacoder (Foster et al., 2017). Taxonomic information
is often associated with these large data sets and each package
encodes this information differently. Since each package tends
to have a unique focus, it is common to use multiple packages
on the same data set, but converting between formats can be
difficult. Considering how recently these large taxonomic data sets
have become commonplace, it is likely that many more packages
that use taxonomic information will be created.

Without a common data standard, using multiple packages
with the same data set requires constant reformatting, which
complicates analyses and increases the chance of errors. Package
maintainers often add functions to convert between the for-
mats of other popular packages, but this practice will become
unsustainable as the number of packages dealing with
taxonomic data increases. Even if a conversion function exists,
doing the conversion can significantly increase the time needed
to analyze very large data sets, like those generated by high-
throughput sequencing. In addition, not all formats accommodate
the same types of information, so conversion can force a loss
of information.

Taxa is a new R package that defines classes and functions for
storing and manipulating taxonomic data. It is meant to provide
a solid foundation on which to build an ecosystem of packages
that will be able to interact seamlessly with minimal hassle for
developers and users. The classes in taxa are designed to be
as flexible as possible so they can be used in all cases involv-
ing taxonomic information. Complexity ranges from simple,
low level classes used to store the names of taxa, ranks, and
databases to high-level classes that can store multiple data sets
associated with a taxonomy. In particular, the taxmap class is
designed to hold any type of arbitrary, user-defined data asso-
ciated with taxonomic information, making its applications
limitless. In addition to the classes, there are associated functions
for manipulating data based on the dplyr philosophy (Wickham
& Francois, 2015). These functions provide an intuitive way of
filtering and manipulating both taxonomic and user-defined data
simultaneously.

Methods
Implementation
The basic classes. Taxa defines some basic taxonomic classes
and functions to manipulate them (Figure 1). The goal is to use
these as low-level building blocks that other R packages can use.
The database class stores the name of a database and any
associated information, such as a description, its URL, and a
regular expression matching the format of valid taxon identifiers
(IDs). The classes taxon_name, taxon_id, and taxon_rank
store the names, IDs, and ranks of taxa and can include a data-
base object indicating their source. All of the classes mentioned
so far can be replaced with character vectors in the higher-level
classes that use them. This is convenient for users who do not
have or need database information. However, using these classes
allows for greater flexibility and rigor as the package develops;
new kinds of information can be added to these classes with-
out affecting backwards compatibility and the database objects
stored in the taxon_name, taxon_id, and taxon_rank
classes can be used to verify the integrity of data, even if data from
multiple databases are combined. These classes are used to
create the taxon class, which is the main building block of the
package. It stores the name, ID, and rank of a taxon using the
taxon_name, taxon_id, and taxon_rank classes. The
taxa class is simply a list of taxon objects with a custom print
method.

The hierarchy and taxonomy classes. The taxon class is used
in the hierarchy and taxonomy classes, which store mul-
tiple taxa (Figure 1). The hierarchy class stores a taxonomic
classification composed of nested taxa of different ranks (e.g.
Animalia, Chordata, Mammalia, Primates, Hominidae, Homo,
sapiens). The hierarchies class is simply a list of hierarchy
objects with a custom print method. The taxonomy class stores
multiple taxa in a tree structure representing a taxonomy. The
individual taxa are stored as a list of taxon objects and the tree
structure is stored as an edge list representing subtaxa-supertaxa
relationships. The edge list is a two-column table of taxon
IDs that are automatically generated for each taxon. Using auto-
matically generated taxon IDs, as opposed to taxon names, allows
for multiple taxa with identical names. For example, “Achlya”
is the name of an oomycete genus as well as a moth genus. It is
also preferable to using taxon IDs from particular databases,
since users might combine data from multiple databases and the
same ID might correspond to different taxa in different data-
bases. For example, “180092” is the ID for Homo sapiens in the
Integrated Taxonomic Information System, but is the ID for
Acianthera teres (an orchid) in the NCBI taxonomy database.
The tree structure of the taxonomy class uses less memory
than the same information saved as a table of ranks by taxa, since
the information for each taxon occurs in only one instance. It
also does not require explicit rank information (e.g. “genus” or
“family”).

The taxmap class. The taxmap class inherits the taxonomy
class and is used to store any number of data sets associated with
taxa in a taxonomy (Figure 1). A list called “data” stores any
number of lists, tables, or vectors that are mapped to all or a sub-
set of the taxa at any rank in the taxonomy. In the case of tables,
the presence of a “taxon_id” column containing unique taxon
IDs indicates which rows correspond to which taxa. Lists and

Page 3 of 11

F1000Research 2018, 7:272 Last updated: 05 MAR 2018

https://stackoverflow.blog/2017/10/10/impressive-growth-r/

Figure 1. A class diagram representing the relationship between classes implemented in the taxa package. Diamond-tipped arrows
indicate that objects of a lower class are used in a higher class. For example, a database object can be stored in the taxon_rank,
taxon_name, or taxon_id objects. A standard arrow indicates that the lower class is inherited by the higher class. For example, the
taxmap class inherits the taxonomy class. An asterisk indicates that an object (e.g. a database object) can be replaced by a simple
character vector. A question mark indicates that the information is optional.

vectors can be named by taxon IDs to indicate which taxa their
elements correspond to. When a taxmap object is subset or
otherwise manipulated, these IDs allow for the taxonomy and
associated data to remain in sync. The taxmap also contains
a list called “funcs” that stores functions that return information
based on the content of the taxmap object. In most functions
that operate on taxmap objects, the results of built-in func-
tions (e.g. n_obs), user-defined functions, and the user-defined
content of lists, vectors, or columns of tables can be refer-
enced as if they are variables on their own, using non-standard
evaluation (NSE). Any value returned by the all_names
function can be used in this way. This greatly reduces the
amount of typing needed and makes the code easier to read.

Manipulation functions. The hierarchy, hierarchies,
and taxa classes have a relatively simple structure that is eas-
ily manipulated using standard indexing (i.e. using [, [[, or $),
but the taxonomy and taxmap classes are hierarchical, mak-
ing them much harder to modify for the average user. To make
manipulating these classes easier, we have developed a set of

functions based on the dplyr data manipulation philosophy. The
dplyr framework provides a consistent, intuitive, and chain-
able set of commands that is easier for new users to understand
than equivalent base R commands, which have accumulated
some idiosyncrasies over the last 40 years. For example, filter_
taxa and filter_obs are analogs of the dplyr filter
function used to subset tables.

One aspect that makes dplyr convenient is the use of NSE to
allow users to refer to column names as if they are variables on
their own. The taxa package builds on this idea. Since taxmap
objects can store any number of user-defined tables, vectors, lists,
and functions, the values accessible by NSE are more diverse.
All columns from any table and the contents of lists/vectors are
available. There are also built-in and user-defined functions whose
results are available via NSE. Referring to the name of the func-
tion as if it were an independent variable will run the function
and return its results. This is useful for data that is dependent on
the characteristics of other data and allows for convenient use of
the magrittr %>% piping operator. For example, the built-in

Page 4 of 11

F1000Research 2018, 7:272 Last updated: 05 MAR 2018

n_subtaxa function returns the number of subtaxa for each
taxon. If this was run once and the result was stored in a static
column, it would have to be updated each time taxa are filtered.
If there are multiple filtering steps piped together using %>%, a
static “n_subtaxa” column would have to be recalculated after
each filtering to keep it up to date. Using a function that is
automatically called when needed eliminates this hassle. The user
still has the option of using a static column if it is preferable to
avoid redundant calculations with large data sets.

Unlike dplyr’s filter function, filter_taxa works
on a hierarchical structure and, optionally, on associated data
simultaneously. By default, the hierarchical nature of the
data is not considered; taxa that meet some criterion are
preserved regardless of their place in the hierarchy. When the
subtaxa option is TRUE, all of the subtaxa of taxa that pass
the filter are also preserved and when supertaxa is TRUE,
all of the supertaxa are likewise preserved. For example,

filter_taxa(my_taxmap, taxon_names == 'Fungi',
subtaxa = TRUE)

would remove any taxa that are not named “Fungi” or are not
a subtaxon of a taxon named “Fungi”. By default, steps are
taken to ensure that the hierarchy remains intact when taxa are
removed and that user-defined data are remapped to remain-
ing taxa. When the reassign_taxa option is TRUE (the
default), the subtaxa of removed taxa are reassigned to any super-
taxa that were not removed, keeping the tree intact. When the
reassign_obs option is TRUE (the default), any user-
defined data assigned to removed taxa are reassigned to the
closest supertaxa that passed the filter. This makes it easy
to remove levels of the taxonomy without losing associated
information. Finally, if the drop_obs option is TRUE (the
default), any user-defined data assigned to removed taxa are
also removed, allowing for subsetting of user-defined data
based on taxon characteristics. The many combinations of these
powerful options make filter_taxa a flexible tool and
make it easier for new users to deal with the hierarchical nature
of taxonomic data. The function sample_n_taxa is a wrap-
per for filter_taxa that randomly samples some number of
taxa. All of the options of filter_taxa can also be used for
sample_n_taxa, in addition to options that influence the
relative probability of each taxon being sampled.

Other dplyr analogs that help users manipulate their data
include filter_obs, sample_n_obs, and mutate_obs,
filter_obs is similar to running the dplyr function fil-
ter on a tabular, user-defined dataset, except that there are more
values available to NSE and lists and vectors can also be subset.
The drop_taxa option can be used to remove any taxa whose
only observations have been removed during the filtering. The
sample_n_obs function is a wrapper for filter_obs that
randomly samples some number of observations. Like sample_
n_taxa, there are options to weight the relative probability that
each observation will be sampled. The mutate_obs function
simply adds columns to tables of user-defined data.

Mapping functions. There are also a few functions that
create mappings between different parts of the data contained in

taxmap or taxonomy objects. These are heavily used internally
in the functions described already, but are also useful for the user.
The subtaxa and supertaxa functions return the taxon IDs
(or other values) associated with all subtaxa or supertaxa of each
taxon. They return one value per taxon. The recursive option
controls how many ranks below or above each taxon are tra-
versed. For example, subtaxa(obj, recursive = 3) will
return information for all subtaxa and their immediate subtaxa
for each taxon. The recursive option also accepts a simple
TRUE/FALSE, with TRUE indicating all subtaxa of sub-
taxa, etc., and FALSE only returning immediate subtaxa, but
not their descendants. By default, subtaxa and
supertaxa return taxon IDs, but the value option allows
the user to choose what information to return for each taxon.
For example, subtaxa(obj, value = "taxon_names")
will return the names of taxa instead of their IDs. Any data
available to NSE (i.e. in the result of all_names(obj)) can be
returned in this way.

The functions roots, stems, branches, and leaves are
a conceptual set of functions that return different subsets of a tax-
onomy. A “root” is any taxon that does not have a supertaxon. A
“stem” is a root plus all subtaxa before the first split in the tree.
A “branch” is any taxon that has only one subtaxon and one
supertaxon. Stems and branches are useful to identify since they
can be removed without losing information on the relative rela-
tionship among the remaining taxa. “Leaves” are taxa with no
subtaxa. By default, these options return taxon IDs, but also have
the value option like subtaxa and supertaxa, so they can
return other information as well. For example, leaves(obj,
value = "taxon_names") will return the names of taxa on
the tips of the tree.

In the case of taxmap objects, the obs function returns informa-
tion for observations associated with each taxon and its subtaxa.
The observations could be rows in a table or elements in a list/
vector that are named by taxon IDs. This is used to easily map
between user-supplied information and taxa. For example, assum-
ing a taxonomy with a single root, the value returned by obs
for the root taxon will contain information for all observations,
since they will all be assigned to a subtaxon of the root taxon.
By default, row/element indices of observations will be returned,
but the obs function also accepts the value option, so the
contents of any column or other information associated with
taxa can be returned as well.

The parsers. Taxonomic data appear in many different forms
depending on the source of the data, making parsing a chal-
lenge for many users. There are two main sources of variation in
how taxonomic data are typically stored: the type of information
supplied (e.g. a taxon name vs. a taxon ID) and how it is
encoded (e.g. in a table vs. as part of a string). In addition, there
might be additional user-specific data associated with the taxa
that need to be parsed. These data might be associated with
each taxon in a classification (e.g the taxon ranks) or might be
associated with each classification (e.g. a sequence ID). In many
cases, both types are present. This complexity makes implement-
ing a generic parser for all types of taxonomic data difficult, so
parsers are typically only available for specific formats. The taxa
package introduces a set of three parsing functions that can parse

Page 5 of 11

F1000Research 2018, 7:272 Last updated: 05 MAR 2018

the vast majority of taxonomic data as well as any associated
data and return a taxmap object.

The parse_tax_data function is used to parse taxonomic
classifications stored as vectors in tables that have already been
read into R. In the case of tables, the classification can be spread
over multiple columns or in a single column with character
separators (e.g. “Primates;Hominidae;Homo;sapiens”) or a com-
bination of the two. Other columns are preserved in the output
and the rows are mapped to the taxon IDs (e.g. the ID assigned
to “sapiens” in the above example). For both tables and vectors,
additional lists, vectors or tables can be included and are assigned
taxon IDs based on some shared attribute with the source of the
taxonomic data (e.g. a shared element ID or the same order).
This makes it possible to parse many data sets at once and have
them all mapped to the same taxonomy in the resultant
taxmap object. Data associated with each taxon in each clas-
sification can also be parsed and included in the output using
regular expressions with capture groups identifying the informa-
tion to be stored and a key corresponding to the capture groups
that identifies what each piece of information is. For example,
Hominidae_f_2;Homo_g_3;sapiens_s_4 would use
the sep ";", the regular expression "(.+)_(.+)_(.+)",
and the key c(my_taxon = "taxon_name", my_rank
= "info", my_id = "info"). The values of the key
indicate what the information is (a taxon name and two arbitrary
pieces of information) and the names of the key (e.g. “my_rank”)
determine the names of columns in the output.

If only a taxon name (e.g. “Primates”) or a taxon ID for a refer-
ence database (e.g. the NCBI taxon ID for Homo sapiens is
“180092”) is available in a table or vector, then the classifica-
tion information must be queried from online databases and the
function lookup_tax_data is used. lookup_tax_data
has all the same functionality of parse_taxa_data in
addition to being able to look up taxonomic classifications
associated with taxon names, taxon IDs, and NCBI sequence IDs.
If the data are embedded in a string (e.g. a FASTA header), then
the function extract_tax_data is used instead. extract_
tax_data has the functionality of parse_tax_data and
lookup_tax_data, except that the information is extracted
from raw strings using a regular expression and a corresponding
key, the same way that data for each taxon in a classification is
extracted by parse_tax_data. Together, these three parsing
functions can handle every combination of data type and format
(Figure 2).

Operation
Taxa is an R package hosted on CRAN, so only an R installation
and internet connection are needed to install and use taxa. Once
installed, most of the functionality of the package can be used with-
out an internet connection. R can be installed on nearly any operat-
ing system, including most UNIX systems, MacOS, and Windows.
The minimum system requirements of R and the taxa package are
easily met by most personal computers. The amount of resources
needed will depend on the size of data being used and the com-
plexity of analyses being conducted. The package can be installed

by entering install.packages("taxa") in an interactive
R session. The development version can be installed from GitHub
using the devtools package:

library(devtools)

install_github("ropensci/taxa")

For users, the typical operation of the software will involve pars-
ing some kind of input data into a taxmap object using a method
demonstrated in Figure 2. Alternatively, a dependent package,
such as metacoder, might provide a parser that wraps one of
the taxa parsers or otherwise returns a taxmap object. Once
the data is in a taxmap object, the majority of a user’s interac-
tion with the taxa package would typically involve filtering and
manipulating the data using functions described in Table 1 and
applying application-specific functions in other packages, such
as metacoder (Figure 3).

Use cases
Taxa is currently being used by metacoder and we are work-
ing on refactoring parts of taxize to work seamlessly with taxa
as well. Both taxize and metacoder provide broadly useful
functions such as querying databases with taxonomic information
and plotting taxonomic information, respectively. We hope that
having these two packages adopt the taxa framework will encour-
age developers of new packages to do so as well. Regardless, the
flexible parsers implemented in taxa (Figure 2) allow for data
from nearly any source to be used. The example analysis below
uses data from the package rgbif (Chamberlain, 2017; Cham-
berlain & Boettiger, 2017), even though rgbif was not designed
to work with taxa. This example shows a few of the benefits of
using taxa. The function occ_data from the rgbif package
returns a data.frame (i.e. table) of occurrence data for species
from the Global Biodiversity Information Facility (GBIF) with one
row per occurrence. The table has one column per taxonomic rank
from kingdom to species.

Look up plant occurrence data for Oregon
library(rgbif)
occ <- rgbif::occ_data(stateProvince = "Oregon",

 scientificName ="Plantae")

This format returned by rgbif::occ_data is a variant on
the format described in Figure 2, row 1, column 2, except that
there is only one rank per column instead of all ranks being
concatenated in the same column (the parser accepts any
number of columns, each of which could contain multiple ranks
delineated by a separator).

Parse data with taxa
library(taxa)
obj <- parse_tax_data(occ$data, class_cols = c(22:26, 28),
 named_by_rank = TRUE)

In the taxmap object returned by parse_tax_data, the origi-
nal table returned by occ_data is stored as obj$data$tax_
data, but an extra column with taxon IDs for each row is
prepended.

Page 6 of 11

F1000Research 2018, 7:272 Last updated: 05 MAR 2018

Figure 2. A table for determining how to parse different sources of taxonomic information using the taxa package. The rows correspond
to the common sources of taxonomic information: full taxonomic classifications encoded in text, taxon IDs from a database, taxon names (a
single rank), and NCBI sequence IDs. The columns correspond to the different formats the information can be encoded in: as a simple vector,
as columns in a table, and as a piece of a complex string (e.g. a FASTA header). In the case of tables and complex strings, other information
associated with the taxa can be preserved in the parsed result, as is done in the “use cases” example below. Any one cell in the table
shows how to parse a given taxonomic information source in a given format using one of the three parsing functions: parse_tax_data,
lookup_tax_data, extract_tax_data.

> print(obj)
<Taxmap>
626 taxa: aab. Plantae ... ayc. NA
626 edges: NA->aab, aab->aac ... aml->ayc
1 data sets:
 tax_data:
 # A tibble: 500 x 103
 taxon_id name key decimalLatitude
 <chr> <chr> <int> <dbl>
 1 amm Racomitriu... 1.70e9 44.2
 2 amn Orthotrich... 1.68e9 NA
 3 amo Didymodon ... 1.67e9 45.7
... with 497 more rows, and 99 more
<<< List of additional columns ommited >>>

The data are then passed through a series of filters piped together.
The filter_obs command removes rows from the occurrence
data table not corresponding to preserved specimens, as well as any
corresponding taxa that no longer have occurrences due to this fil-
tering. The multiple calls to filter_taxa that follow demonstrate
some of the different parameterizations of this powerful function.
By default, taxa that don’t pass the filter are simply removed and
any occurrences assigned to them are reassigned to supertaxa that
did pass the filter (e.g. occurrences for a deleted species would be
assigned to the species’ genus). When the supertaxa option
is set to TRUE, all the supertaxa of taxa that pass the filter will
also be preserved. The subtaxa option works the same way.
Finally, the filtered data are passed to a plotting function from
the metacoder package that accepts the taxmap format. The

Page 7 of 11

F1000Research 2018, 7:272 Last updated: 05 MAR 2018

Table 1. Primary classes and functions found in taxa.

Function Description

• taxon A class that combines the classes containing the name, rank, and ID for a taxon.

• taxa A simple list of taxon objects in an arbitrary order.

• hierarchy A class that stores a list of nested taxa constituting a classification.

• hierarchies A simple list of hierarchy objects in an arbitrary order.

• taxonomy A class that stores a list of unique taxon objects and a tree structure.

• taxmap A class that combines a taxonomy with user-defined, tables, lists, or vectors
associated with taxa in the taxonomy. The taxonomic tree and the associated data
can then be manipulated such that the two remain in sync.

• supertaxa
• subtaxa

A “supertaxon” is a taxon of a coarser rank that encompasses the taxon of interest
(e.g. Homo is a supertaxon of Homo sapiens). The “subtaxa” of a taxon are all
those of a finer rank encompassed by that taxon. For example, Homo sapiens is a
subtaxon of Homo. The supertaxa/subtaxa function returns the supertaxa/subtaxa
of all or a subset of the taxa in a taxonomy object. By default, these functions
return taxon IDs, but they can also return any data associated with taxa.

• roots
• leaves
• stems
• branches

Roots are taxa that lack a supertaxon. Likewise, leaves are taxa that lack
a subtaxon. Stems are those taxa from the roots to the first split in the tree.
Branches are taxa with exactly one supertaxon and one subtaxon. In general,
stems and branches can be filtered out without changing the relative relationship
between the remaining taxa. By default, these functions return taxon IDs, but they
can also return any data associated with taxa.

• obs Returns the information about every observation from an user-defined data set for
each taxon and their subtaxa. By default, indices of a list, vector, or table mapped
to taxa are returned.

• filter_taxa
• filter_obs

Subset taxa or associated data in taxmap objects based on arbitrary conditions.
Hierarchical relationships among taxa and mappings between taxa and
observations are taken into account.

• arrange_taxa
• arrange_obs

Order taxon or observation data in taxmap objects.

• sample_n_taxa
• sample_n_obs
• sample_frac_taxa
• sample_frac_obs

Randomly sample taxa or observation data in taxmap objects. Weights can
be applied that take into account the taxonomic hierarchy and associated
data. Hierarchical relationships among taxa and mappings between taxa and
associated data are taken into account.

plot is a taxonomic tree with color and size used to display the
number of occurrences associated with each taxon (Figure 3).

Plot number of occurrences for each taxon
library(metacoder)
obj %>%
 filter_obs("tax_data",
 basisOfRecord == "PRESERVED_SPECIMEN",
 drop_taxa = TRUE) %>%
 filter_taxa(taxon_ranks != "specificEpithet") %>%
 filter_taxa(! is.na(taxon_names)) %>%
 filter_taxa(taxon_names == "Tracheophyta",
 subtaxa = TRUE) %>%
 filter_taxa(taxon_ranks == "order",
 n_subtaxa > 10, subtaxa = TRUE,
 supertaxa = TRUE) %>%
 heat_tree(node_label = taxon_names,
 node_color = n_obs,

 node_size = n_obs,

 node_color_axis_label = "# occurrences")

Note the use of columns in the original input table like basisOf-
Record being used as if they were independent variables. This
is implemented by NSE as a convenience to users, but they
could also have been included by typing the full path to the vari-
able (e.g. obj$data$tax_data$basisOfRecord or
occ$data$basisOfRecord). This is similar to the use
of taxon_ranks and taxon_names, which are actually
functions included in the class (e.g. obj$taxon_ranks()). The
benefit of using NSE is that they are reevaluated each time their
name is referenced. This means that the first time taxon_ranks
is referenced in the example code it returns a different value than
the second time it is referenced, because some taxa were filtered
out. If obj$taxon_ranks() is used instead, it would fail
on the second call because it would return information for taxa
that have been filtered out already.

Page 8 of 11

F1000Research 2018, 7:272 Last updated: 05 MAR 2018

Figure 3. The result of the example analysis shown in the text. Records of plant species occurrences in Oregon are downloaded
from the Global Biodiversity Information Facility (GBIF) using the rgbif package (Chamberlain, 2017). Then a taxa parser is used to
parse the table of GBIF data into a taxmap object. A series of filters are then applied. First, all occurrences that are not from preserved
specimens as well any taxa that have no occurrences from preserved specimens are removed. Then, all taxa at the species level are
removed, but their occurrences are reassigned to the genus level. All taxa without names are then removed. In the final two filters, only
orders within Tracheophyta with greater than 10 subtaxa are preserved. The metacoder package is then used to create a heat tree
(i.e. taxonomic tree) with color and size used to display the number of occurrences associated with each taxon at each level of the
hierarchy.

Conclusions
While taxa is useful on its own, its full potential will be real-
ized after being adopted by the community as a standard for
interacting with taxonomic information in R. A robust standard
for the commonplace problems of data parsing and manipulation
will free developers to focus on specific novel functionality. The
taxa package already serves as the foundation of another pack-
age called metacoder, which provides functions for plotting
taxonomic information and parsing common file formats used
in metagenomics research. Taxize, the primary package for

querying taxonomic information from internet sources, is also
being refactored to be compatible with taxa. We hope the broadly
useful functionality of these two packages will jump start adoption
of taxa as the standard for taxonomic data manipulation in R.

Software availability
Install in R as install.packages("taxa")

Software available from: https://cran.r-project.org/web/packages/
taxa/index.html

Page 9 of 11

F1000Research 2018, 7:272 Last updated: 05 MAR 2018

https://cran.r-project.org/web/packages/taxa/index.html
https://cran.r-project.org/web/packages/taxa/index.html

Source code available from: https://github.com/ropensci/taxa

Archived source code available from: https://doi.org/10.5281/
zenodo.1183667 (Foster et al., 2017)

License: MIT

Competing interests
The authors have declared that no competing interests exist.
The use of trade, firm, or corporation names in this publication
is for the information and convenience of the reader. Such use

does not constitute an official endorsement or approval by the
United States Department of Agriculture or the Agricultural
Research Service of any product or service to the exclusion
of others that may be suitable.

Grant information
This work was supported in part by funds from USDA Agricultural
Research Service Projects 2027-22000-039-00 and 2072-22000-
039-15-S to NG.

The funders had no role in study design, data collection and
analysis, decision to publish, or preparation of the manuscript.

References

	 Chamberlain S: rgbif: Interface to the Global ‘Biodiversity’ Information Facility
‘API’. R package version 0.9.8. 2017.
Reference Source

	 Chamberlain SA, Boettiger C: R Python, and Ruby clients for GBIF species
occurrence data. PeerJ Preprints. 2017; 5: e3304v1.
Publisher Full Text

	 Chamberlain SA, Szöcs E: taxize: taxonomic search and retrieval in R [Version 1;
Referees: 3 Approved]. F1000Res. 2013; 2: 191.
PubMed Abstract | Publisher Full Text | Free Full Text

	 Gentleman RC, Carey VJ, Bates DM, et al.: Bioconductor: open software
development for computational biology and bioinformatics. Genome Biol. 2004;
5(10): R80.
PubMed Abstract | Publisher Full Text | Free Full Text

	 Foster Z, Chamberlain S, Grunwald N: taxa v0.2.0 (Version 0.2.0). Zenodo. 2017.
Publisher Full Text

	 Foster ZS, Sharpton TJ, Grünwald NJ: Metacoder: An R package for visualization
and manipulation of community taxonomic diversity data. PLoS Comput Biol.
2017; 13(2): e1005404.
PubMed Abstract | Publisher Full Text | Free Full Text

	 McMurdie PJ, Holmes S: phyloseq: an R package for reproducible interactive
analysis and graphics of microbiome census data. PLoS One. 2013; 8(4):
e61217.
PubMed Abstract | Publisher Full Text | Free Full Text

	 Oksanen J, Blanchet FG, Kindt R, et al.: Package ‘Vegan’. Community Ecology
Package, Version. 2013; 2(9).

	 Tippmann S: Programming Tools: Adventures with R. Nature. 2015; 517(7532):
109–10.
PubMed Abstract | Publisher Full Text

	 Wickham H, Francois R: “Dplyr: A Grammar of Data Manipulation”. R Package
Version 0.4. 2015; 1: 20.

Page 10 of 11

F1000Research 2018, 7:272 Last updated: 05 MAR 2018

https://github.com/ropensci/taxa
https://doi.org/10.5281/zenodo.1183667
https://doi.org/10.5281/zenodo.1183667
https://CRAN.R-project.org/package=rgbif
http://dx.doi.org/10.7287/peerj.preprints.3304v1
http://www.ncbi.nlm.nih.gov/pubmed/24555091
http://dx.doi.org/10.12688/f1000research.2-191.v2
http://www.ncbi.nlm.nih.gov/pmc/articles/3901538
http://www.ncbi.nlm.nih.gov/pubmed/15461798
http://dx.doi.org/10.1186/gb-2004-5-10-r80
http://www.ncbi.nlm.nih.gov/pmc/articles/545600
http://dx.doi.org/10.5281/zenodo.1183667
http://www.ncbi.nlm.nih.gov/pubmed/28222096
http://dx.doi.org/10.1371/journal.pcbi.1005404
http://www.ncbi.nlm.nih.gov/pmc/articles/5340466
http://www.ncbi.nlm.nih.gov/pubmed/23630581
http://dx.doi.org/10.1371/journal.pone.0061217
http://www.ncbi.nlm.nih.gov/pmc/articles/3632530
http://www.ncbi.nlm.nih.gov/pubmed/25557714
http://dx.doi.org/10.1038/517109a

The benefits of publishing with F1000Research:

Your article is published within days, with no editorial bias

You can publish traditional articles, null/negative results, case reports, data notes and more

The peer review process is transparent and collaborative

Your article is indexed in PubMed after passing peer review

Dedicated customer support at every stage

For pre-submission enquiries, contact research@f1000.com

Page 11 of 11

F1000Research 2018, 7:272 Last updated: 05 MAR 2018

