
R Python, and Ruby clients for GBIF species occurrence data1

Scott Chamberlain∗,a, Carl Boettigerb2

arOpenSci, Museum of Paleontology, University of California, Berkeley, CA, USA3

brOpenSci, Department of Enivornmental Science, Policy and Management, University of California, Berkeley, CA, USA4

Abstract5

Corresponding Author:6

Scott Chamberlain7

rOpenSci, Museum of Paleontology, University of California, Berkeley, CA, USA8

Email address: scott@ropensci.org9

∗Corresponding author
Email addresses: scott(at)ropensci.org (Scott Chamberlain), carl(at)ropensci.org (Carl Boettiger)

September 26, 2017

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3304v1 | CC BY 4.0 Open Access | rec: 29 Sep 2017, publ: 29 Sep 2017

mailto:scott@ropensci.org

Background. The number of individuals of each species in a given location forms the basis for many10

sub-fields of ecology and evolution. Data on individuals, including which species, and where they’re11

found can be used for a large number of research questions. Global Biodiversity Information Facility12

(hereafter, GBIF) is the largest of these. Programmatic clients for GBIF would make research dealing13

with GBIF data much easier and more reproducible.14

Methods. We have developed clients to access GBIF data for each of the R, Python, and Ruby15

programming languages: rgbif, pygbif, gbifrb.16

Results. For all clients we describe their design and utility, and demonstrate some use cases.17

Discussion. Programmatic access to GBIF will facilitate more open and reproducible science - the three

GBIF clients described herein are a significant contribution towards this goal.

2

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3304v1 | CC BY 4.0 Open Access | rec: 29 Sep 2017, publ: 29 Sep 2017

Introduction18

Perhaps the most fundamental element in many fields of ecology is the individual organism. The number19

of individuals of each species in a given location forms the basis for many sub-fields of ecology and20

evolution. Some research questions necessitate collecting new data, while others can easily take advantage21

of existing data. In fact, some ecology fields are built largely on existing data, e.g., macro-ecology22

(Brown, 1995; Beck et al., 2012).23

Data on individuals, including which species, and where they’re found, can be used for a large number of24

research questions. Biodiversity records have been used for a suite of other use cases: validating habitat25

suitability models with real occurrence data (Ficetola et al., 2014); ancestral range reconstruction26

(Ferretti et al., 2015; María Mendoza et al., 2015); development of invasive species watch lists (Faulkner27

et al., 2014); evaluating risk of invasive species spread (Febbraro et al., 2013); and effects of climate28

change on future biodiversity (Brown et al., 2015).29

In addition to wide utility, this data is important for conservation. Biodiversity loss is one of the greatest30

challenges of our time (Pimm et al., 2014), and some have called this the sixth great mass extinction31

(Ceballos et al., 2015). Given this challenge there is a great need for data on specimen records, whether32

collected from live sightings in the field or specimens in museums.33

Global Biodiversity Information Facility34

There are many online services that collect and maintain specimen records. However, Global Biodiversity35

Information Facility (hereafter, GBIF, http://www.gbif.org) is the largest collection of biodiversity36

records globally, currently with 820 million records, roughly 5.9 million taxa, 36,000 datasets from37

1,300 publishers (as of 2016-02-09). Many large biodiversity warehouses such as iNaturalist (http:38

//www.inaturalist.org), VertNet (http://vertnet.org), and USGS’s Biodiversity Information Serving39

Our Nation (BISON; http://bison.usgs.ornl.gov) all feed into GBIF.40

The most important organizational level in GBIF occurrence data is the occurrence record. The41

fields in a record vary, but include information about taxonomy (kingdom, phylum, genus, species42

names) and their identifiers, dataset metadata, and locality information including geospatial position.43

Going upstream, each record is part of a dataset, where each dataset is submitted by an organization,44

organizations are organized into nodes, datasets are published through institutions (which may be45

hosted at another organization), and a network is a group of datasets (managed by GBIF).46

3

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3304v1 | CC BY 4.0 Open Access | rec: 29 Sep 2017, publ: 29 Sep 2017

http://www.gbif.org
http://www.inaturalist.org
http://www.inaturalist.org
http://www.inaturalist.org
http://vertnet.org
http://bison.usgs.ornl.gov

Each occurrence record has some taxonomic name associated with it, which itself is linked to a lot of47

other taxonomic data - including a master taxonomic backbone that integrates taxonomies across many48

taxonomic authorities.49

The organization of GBIF matters because you can navigate GBIF data through these hierarchical50

organizational levels - it helps to be familiar with the terminology and how each group relates to another.51

The clients52

Although we discuss libraries for R, Python, and Ruby here, we focus mostly on the R library rgbif as53

it has seen the most developer and user attention, and is the most mature.54

rgbif55

Herein, we describe the rgbif software package (Chamberlain et al.) for working with GBIF data in the56

R programming environment (R Core Team, 2014). R is a widely used language in academia, as well as57

non-profit and private sectors. Importantly, R makes it easy to execute all steps of the research process,58

including data management, data manipulation and cleaning, statistics, and visualization. Thus, an R59

client for getting GBIF data is a powerful tool to facilitate reproducible research.60

The rgbif package is nearly completely written in R (a small Javascript library is included for61

reading well known text (Herring, 2011)), uses an MIT license to maximize use everywhere. rgbif is62

developed publicly on GitHub at https://github.com/ropensci/rgbif, where development versions of63

the package can be installed, and bugs and feature requests reported. Stable versions of rgbif can be64

installed from CRAN, the distribution network for R packages. rgbif is part of the rOpenSci project65

(http://ropensci.org), a developer network making R software to facilitate reproducible research.66

pygbif67

pygbif (Chamberlain) is a Python library for working with GBIF data in the Python programming68

environment. Python is a general purpose programming language used widely in all sectors, and for all69

parts of software development including server and client side use cases. Python is used exclusively70

in some scientific disciplines (e.g., astronomy), and has partial usage in other disciplines. A Python71

client for GBIF data is an important tool given the even wider usage of Python than R, though maybe72

slightly less than R for ecology/biology disciplines.73

4

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3304v1 | CC BY 4.0 Open Access | rec: 29 Sep 2017, publ: 29 Sep 2017

http://choosealicense.com/licenses/mit/
https://github.com/ropensci/rgbif
https://cran.rstudio.com/web/packages/rgbif/
http://ropensci.org

pip install pygbif

import pygbif

The pygbif library is less mature and complete than the R package. It also uses an MIT license to74

maximize use everywhere. pygbif is developed publicly on GitHub at https://github.com/sckott/pygbif,75

where development versions of the package can be installed, and bugs and feature requests reported.76

Stable versions of pygbif can be installed from pypi, the distribution network for Python libraries.77

gbifrb78

gbifrb (Chamberlain) is a library for working with GBIF data in the Ruby programming environment.79

Like Python, Ruby is a general purpose programming language used widely in all sectors. Unlike80

Python, Ruby is not used extensively in scientific disciplines. However, a Ruby client for GBIF data81

can be an important tool given how widely Ruby is used for web and web service development.82

gem install gbifrb

require 'gbifrb'

The gbifrb library is less mature and complete than the R and Python libraries. It also uses83

an MIT license to maximize use everywhere. gbifrb is developed publicly on GitHub at https:84

//github.com/sckott/gbifrb, where development versions of the package can be installed, and bugs and85

feature requests reported. Stable versions of gbifrb can be installed from [Rubygems][gemgbif], the86

distribution network for Ruby libraries.87

Library interfaces88

rgbif, pygbif, and gbifrb are designed following the GBIF Application Programming Interface, or89

API. The GBIF API has four major components: registry, taxonomic names, occurrences, and maps. We90

also include functions to interface with the OAI-PMH GBIF service; only dataset (registry) information91

is available via this service, however. An interface to the GBIF maps API is in development for rgbif,92

but is non-existent for both pygbif and gbifrb. All three libraries have a suite of functions dealing93

with each of registry, taxonomic, names, and occurrences - we’ll go through each in turn describing94

design of the user interface and example usage.95

5

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3304v1 | CC BY 4.0 Open Access | rec: 29 Sep 2017, publ: 29 Sep 2017

http://choosealicense.com/licenses/mit/
https://github.com/sckott/pygbif
https://pypi.python.org/pypi/pygbif
http://choosealicense.com/licenses/mit/
https://github.com/sckott/gbifrb
https://github.com/sckott/gbifrb
https://github.com/sckott/gbifrb
http://www.gbif.org/developer/summary

GBIF headers96

With each request rgbif, pygbif, gbifrb make to GBIF’s API, we send request headers that tell GBIF97

what library the request is coming from, including what version of the library. This helps GBIF know98

what proportion of requests are coming from which library, and therefore from R vs. Python vs. Ruby;99

this information is helpful for GBIF in thinking about how people are using GBIF data.100

Registry101

The GBIF registry API services are spread across five sets of functions via the main GBIF API:102

• Datasets103

• Installations104

• Networks105

• Nodes106

• Organizations107

Dataset information in general is available via the OAI-PMH service, functions in rgbif prefixed with108

gbif_oai_, but not available in pygbif or gbifrb yet.109

Datasets are owned by organizations. Organizations are endorsed by nodes to share datasets with GBIF.110

Datasets are published through institutions, which may be hosted at another organization. A network111

is a group of datasets (managed by GBIF). Datasets are the units that matter the most with respect112

to registry information, while installations, networks, nodes, and organizations are simply higher level113

organizational structure.114

Datasets115

Dataset functions include search, dataset metadata retrieval, and dataset metrics. Searching for datasets116

is an important part of the discovery process. One can search for datasets on the GBIF web portal.117

However, programmatic searching using any of these libraries is more powerful. Identifying datasets118

appropriate for a research question is helpful as you can get metadata for each dataset, and track down119

dataset specific problems, if any.120

6

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3304v1 | CC BY 4.0 Open Access | rec: 29 Sep 2017, publ: 29 Sep 2017

The dataset_search() function in rgbif is one way to search for datasets. Here, we search for the121

term “oregon”, which finds any datasets that have words matching that term.122

res <- dataset_search(query = "oregon")

res$data$datasetTitle[1:10]

#> [1] "Oregon State Ichthyology Collection"

#> [2] "Oregon State University Herpetological Collection"

#> [3] "Mygalomorph spiders from southwestern Oregon, USA, with descriptions of four new species"

#> [4] "A new species of Helobdella (Hirudinida: Glossiphoniidae) from Oregon, USA"

#> [5] "Annotated Checklist of the large branchiopod crustaceans of Idaho, Oregon and Washington, USA, with the “ rediscovery ” of a new species of Branchinecta (Anostraca: Branchinectidae)"

#> [6] "A new species of Chrysobothris Eschscholtz from Oregon and Washington, with notes on other Buprestidae (Coleoptera) occurring in the United States and Canada"

#> [7] "Three new species of Grylloblatta Walker (Insecta: Grylloblattodea: Grylloblattidae), from southern Oregon and northern California"

#> [8] "A new species of Cladotanytarsus (Lenziella) from Oregon supports the systematic concept of the subgenus (Diptera: Chironomidae)"

#> [9] "A new monster from southwest Oregon forests: Cryptomasterbehemoth sp. n. (Opiliones, Laniatores, Travunioidea)"

#> [10] "Two new species of Fluminicola (Caenogastropoda, Lithoglyphidae) from southwest Oregon, USA, and a range extension for F. multifarius"

See also datasets() and dataset_suggest() in rgbif for searching for datasets.123

In Python, we can similarly search for datasets. Here, search for datasets of type OCCURRENCE:124

from pygbif import registry

registry.datasets(type="OCCURRENCE")

In Ruby, we can do the same. Here, search for datasets of type OCCURRENCE:125

require 'gbifrb'

registry = Gbif::Registry

registry.datasets(type: "OCCURRENCE")

Dataset metrics. Dataset metrics are another useful way of figuring out what datasets you may want to126

use. One drawback is that these metrics data are only available for datasets of type checklist, but there127

are quite a lot of them (21697).128

Here, in R we search for dataset metrics for a single dataset, with uuid ec93a739-1681-4b04-b62f-3a687127a17f,129

a checklist of the ants (Hymenoptera: Formicidae) of the World.130

7

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3304v1 | CC BY 4.0 Open Access | rec: 29 Sep 2017, publ: 29 Sep 2017

res <- dataset_metrics(uuid='ec93a739-1681-4b04-b62f-3a687127a17f')

data.frame(rank = names(res$countByRank),

count = unname(unlist(res$countByRank)))

rank count

SPECIES 13710

SUBSPECIES 3234

GENUS 726

TRIBE 53

SUBFAMILY 20

FAMILY 2

KINGDOM 1

PHYLUM 1

CLASS 1

ORDER 1

And in Python, get metrics for the same dataset as above:131

from pygbif import registry

registry.dataset_metrics(uuid='ec93a739-1681-4b04-b62f-3a687127a17f')

The same in Ruby:132

require 'gbifrb'

registry = Gbif::Registry

registry.dataset_metrics(uuid: 'ec93a739-1681-4b04-b62f-3a687127a17f')

Networks, nodes, and installations133

Networks, nodes and installations are at a higher level of organization above datasets, but can be134

useful if you want to explore data from given organizations. Here, in R we search for the first 10 GBIF135

networks, returning just the title field.136

8

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3304v1 | CC BY 4.0 Open Access | rec: 29 Sep 2017, publ: 29 Sep 2017

networks(limit = 10)$data$title

#> [1] "GBIF Backbone Sources"

#> [2] "Canadensys"

#> [3] "Southwest Collections of Arthropods Network (SCAN)"

#> [4] "VertNet"

#> [5] "Dryad"

#> [6] "GBIF Network"

#> [7] "The Knowledge Network for Biocomplexity (KNB) "

#> [8] "Online Zoological Collections of Australian Museums (OZCAM)"

#> [9] "Catalogue of Life"

#> [10] "Ocean Biogeographic Information System (OBIS)"

And in Python:137

from pygbif import registry

registry.networks(limit = 10)

And in Ruby:138

require 'gbifrb'

registry = Gbif::Registry

registry.networks(limit: 10)

Taxonomic names139

The GBIF taxonomic names API services are spread across five functions in rgbif:140

• Search GBIF name backbone - name_backbone()141

• Search across all checklists - name_lookup()142

• Quick name lookup - name_suggest()143

• Name usage of a name according to a checklist - name_usage()144

• GBIF name parser - parsenames()145

9

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3304v1 | CC BY 4.0 Open Access | rec: 29 Sep 2017, publ: 29 Sep 2017

pygbif and gbifrb have all the same functions, except the name parser goes by name_parser() in146

pygbif and gbifrb.147

The goal of these name functions is often to settle on a taxonomic name known to GBIF’s database.148

This serves two purposes: 1) when referring to a taxonomic name, you can point to a URI on the149

Internet, and 2) you can search for metadata on a taxon, and occurrences of that taxon in GBIF.150

Taxonomic names are particularly tricky. Many different organizations have their own unique codes for151

the same taxonomic names, and some taxonomic groups have preferred sources for the definitive names152

for that group. That’s why it’s best to determine what name GBIF uses, and its associated identifier,153

for the taxon of interest instead of simply searching for occurrences with a taxonomic name.154

When searching for occurrences (see below) you can search by taxonomic name (and other filters, e.g.,155

taxonomic rank), but you’re probably better off figuring out the taxonomic key in the GBIF backbone156

taxonomy, and using that to search for occurrences. The taxonkey parameter in the GBIF occurrences157

API expects a GBIF backbone taxon key.158

GBIF Backbone159

The GBIF backbone taxonomy is used in GBIF to have a consistent way to refer to taxonomic160

names throughout their services. The backbone has 5869207 unique names and 2818534 species161

names. The backbone taxonomy is also a dataset with key d7dddbf4-2cf0-4f39-9b2a-bb099caae36c162

(https://www.gbif.org/dataset/d7dddbf4-2cf0-4f39-9b2a-bb099caae36c).163

We can search the backbone taxonomy with the function name_backbone() in all thee clients. Here,164

we’re searching for the name Poa, restricting to genera, and the family Poaceae, in R165

res <- name_backbone(name='Poa', rank='genus', family='Poaceae')

res[c('usageKey', 'kingdom')]

#> $usageKey

#> [1] 2704173

#>

#> $kingdom

#> [1] "Plantae"

And in Python166

10

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3304v1 | CC BY 4.0 Open Access | rec: 29 Sep 2017, publ: 29 Sep 2017

https://www.gbif.org/dataset/d7dddbf4-2cf0-4f39-9b2a-bb099caae36c

from pygbif import species

res = species.name_backbone(name='Poa', rank='genus', family='Poaceae')

[res[x] for x in ['usageKey', 'kingdom']]

And in Ruby167

require 'gbifrb'

species = Gbif::Species

res = species.name_backbone(name: 'Poa', rank: 'genus', family: 'Poaceae')

res.select { |k,v| k.match(/usageKey|kingdom/) }

Name searching168

One of the quickest ways to search for names is using name_suggest(), which does a very quick search169

and returns minimal data. Here, we’re searching for the query term Pum, and we get back many names:170

name_suggest(q='Pum', limit = 6)

key canonicalName rank

2142856 Althepus pum SPECIES

8589398 Pumiliopimoidae FAMILY

8783253 Pumililema GENUS

4823360 Pumiliopareia GENUS

4635949 Pumilina GENUS

4648228 Pumilopaurus GENUS

The same in Python171

from pygbif import species

species.name_suggest(q='Pum', limit = 6)

And in Ruby172

11

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3304v1 | CC BY 4.0 Open Access | rec: 29 Sep 2017, publ: 29 Sep 2017

require 'gbifrb'

species = Gbif::Species

species.name_suggest(q: 'Pum', limit: 6)

With these results, you can then proceed to search for occurrences with the taxon key(s), or drill down173

further with other name searching functions to get the exact taxon of interest.174

Occurrences175

GBIF provides two ways to get occurrence data: through the /occurrence/search route (see176

occ_search in rgbif, occurrences.search in pygbif, Occurrences.search in gbifrb), or via the177

/occurrence/download route (many functions, see below).178

occ_search()/occurrences.search/Occurrences.search are the main functions for the search route,179

and are more appropriate when you want less data, while the download functions are more appropriate180

for larger data requests.181

Small vs. large amounts of data of course is all relative. GBIF imposes for any given search a limit of182

200,000 records in the search service, after which point you can’t download any more records for that183

search. However, you can download more records for different searches.184

We think the search service is still quite useful for many people even given the 200,000 limit. For those185

that need more data, we have created a similar interface in the download functions that should be easy186

to use with minimal work. Users should take note that using the download service has a few extra steps187

to get data into R, but is straight-forward.188

The download service, like the occurrence search service, is rate-limited. That is, you can only have189

one to three downloads running simultaneously for your user credentials. However, simply check when190

a download job is complete, then you can start a new download request. See “Queuing Download191

Requests” below for help automating many download requests in R.192

Download API193

The download API syntax is similar to the occurrence search API in that the same parameters are194

used, but the way in which the query is defined is different. For example, in the download API you can195

do greater than searches (i.e., latitude > 50), whereas you cannot do that in the occurrence search196

12

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3304v1 | CC BY 4.0 Open Access | rec: 29 Sep 2017, publ: 29 Sep 2017

API. Thus, unfortunately, we couldn’t make the query interface exactly the same for both search and197

download functions.198

Using the download service can consist of as few as three steps: 1) Request data via a search; 2)199

Download data; 3) Import data into R.200

Request data download given a query. Here, we search for the taxon key 3119195, which is the key for201

Helianthus annuus (http://www.gbif.org/species/3119195).202

occ_download('taxonKey = 3119195')

#> <<gbif download>>

#> Username: xxxx

#> E-mail: xxxx

#> Download key: 0000840-150615163101818

You can check on when the download is ready using the functions occ_download_list() and203

occ_download_meta(). When it’s ready use occ_download_get() to download the dataset to your204

computer.205

(res <- occ_download_get("0000840-150615163101818", overwrite = TRUE))

#> <<gbif downloaded get>>

#> Path: ./0000840-150615163101818.zip

#> File size: 3.19 MB

What’s printed out above is a very brief summary of what was downloaded, the path to the file, and its206

size (in human readable form).207

Next, read the data in to R using the function occ_download_import().208

library("dplyr")

dat <- occ_download_import(res)

dat %>%

select(gbifID, decimalLatitude, decimalLongitude)

#> gbifID abstract accessRights accrualMethod accrualPeriodicity accrualPolicy alternative audience

#> 1 725767384 NA NA NA NA NA NA

13

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3304v1 | CC BY 4.0 Open Access | rec: 29 Sep 2017, publ: 29 Sep 2017

http://www.gbif.org/species/3119195

#> 2 725767447 NA NA NA NA NA NA

#> 3 725767450 NA NA NA NA NA NA

#> 4 725767513 NA NA NA NA NA NA

#> 5 725767546 NA NA NA NA NA NA

#> 6 725767579 NA NA NA NA NA NA

#> 7 725767609 NA NA NA NA NA NA

#> 8 725767645 NA NA NA NA NA NA

#> 9 725767678 NA NA NA NA NA NA

#> 10 725767681 NA NA NA NA NA NA

#>

#> Variables not shown: available (lgl), bibliographicCitation (chr), conformsTo (lgl), contributor (lgl),

#> coverage (lgl), created (chr), creator (lgl), date (lgl), dateAccepted (lgl), dateCopyrighted

#> (lgl), dateSubmitted (lgl), description (lgl), educationLevel (lgl), extent (lgl), format (lgl),

#> hasFormat (lgl), hasPart (lgl), hasVersion (lgl), identifier (chr), instructionalMethod (lgl),

In Python209

from pygbif import occurrences as occ

occ.download('taxonKey = 3119195')

(res = occ.download_get("0000840-150615163101818", overwrite = True))

We don’t have pygbif functionality at the moment for importing data, but it’s coming soon.210

The Ruby library gbifrb does not yet have occurrence download functionality.211

Downloaded data format. The downloaded dataset from GBIF is a Darwin Core Archive (DwC-A), an212

internationally recognized biodiversity informatics standard (http://rs.tdwg.org/dwc/). The DwC-A213

downloaded is a compressed folder with a number of files, including metadata, citations for each of the214

datasets included in the download, and the data itself, in separate files for each dataset as well as one215

single .txt file. In rgbif::occ_download_import(), we simply fetch data from the .txt file. If you216

want to dig into the metadata, citations, etc., it is easily accessible from the folder on your computer.217

Search API218

The search API follows the GBIF API and is broken down into the following functions:219

14

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3304v1 | CC BY 4.0 Open Access | rec: 29 Sep 2017, publ: 29 Sep 2017

http://rs.tdwg.org/dwc/

• Get a single numeric count of occurrences - rgbif: occ_count() / pygbif: occurrences.count220

/ gbifrb: Occurrences.count221

• Search for occurrences - rgbif: occ_search() / pygbif: occurrences.search / gbifrb:222

Occurrences.search223

• A simplified and optimized version of rgbif: occ_search() or occ_data() / none / none224

• Get occurrences by occurrence identifier - rgbif: occ_get() / pygbif: occurrences.get /225

gbifrb: Occurrences.get226

• Get occurrence metadata - rgbif: occ_metadata() / pygbif: various / gbifrb: various227

Search for occurrences. The main search work-horse is occ_search(). This function allows very flexible228

search definitions. In addition, this function does paging internally, making it such that the user does229

not have worry about the 300 records per request limit - but of course we can’t go over the 200,000230

maximum limit.231

The output of occ_search() presents a compact data.frame so that no matter how large the232

data.frame, the output is easily assessed because only a few of the records (rows) are shown, only a few233

columns are shown (with others shown in name only), and metadata is shown on top of the data.frame234

to indicate data found and returned, media records found, unique taxonomic hierarchies returned, and235

the query executed.236

The output of these examples, except one, aren’t shown.237

Search by species name, using name_backbone() first to get key238

R239

library(rgbif)

(key <- name_suggest(q = 'Helianthus annuus', rank = 'species')$key[1])

#> [1] 9206251

occ_search(taxonKey = key, limit = 2)

#> Records found [17858]

#> Records returned [2]

#> No. unique hierarchies [1]

#> No. media records [1]

15

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3304v1 | CC BY 4.0 Open Access | rec: 29 Sep 2017, publ: 29 Sep 2017

#> No. facets [0]

#> Args [limit=2, offset=0, taxonKey=9206251, fields=all]

#> # A tibble: 2 x 75

#> name key decimalLatitude decimalLongitude

#> <chr> <int> <dbl> <dbl>

#> 1 Helianthus annuus 1433793045 59.66859 16.54257

#> 2 Helianthus annuus 1434024463 63.71622 20.31247

#> # ... with 71 more variables: issues <chr>, datasetKey <chr>,

#> # publishingOrgKey <chr>, publishingCountry <chr>, protocol <chr>,

#> # lastCrawled <chr>, lastParsed <chr>, crawlId <int>, extensions <chr>,

#> # basisOfRecord <chr>, ...

Python240

from pygbif import species

from pygbif import occurrences as occ

key = species.name_suggest(q = 'Helianthus annuus', rank = 'species')['data'][0]['key']

occ.search(taxonKey = key, limit = 2)

Ruby241

require 'gbifrb'

species = Gbif::Species

occ = Gbif::Occurrences

key = species.name_suggest(q: 'Helianthus annuus', rank: 'species')['data'][0]['key']

occ.search(taxonKey: key, limit: 2)

Instead of getting a taxon key first, you can search for a name directly242

R243

occ_search(scientificName = 'Ursus americanus')

Python244

16

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3304v1 | CC BY 4.0 Open Access | rec: 29 Sep 2017, publ: 29 Sep 2017

occ.search(scientificName = 'Ursus americanus')

Ruby245

occ.search(scientificName: 'Ursus americanus')

Search for many species246

R247

splist <- c('Cyanocitta stelleri', 'Junco hyemalis', 'Aix sponsa')

keys <- sapply(splist, function(x) name_suggest(x)$key[1], USE.NAMES = FALSE)

occ_search(taxonKey = keys, limit = 5, return = 'data')

Python248

from pygbif import species

from pygbif import occurrences as occ

splist = ['Cyanocitta stelleri', 'Junco hyemalis', 'Aix sponsa']

keys = [species.name_suggest(x)['data'][0]['key'] for x in splist]

occ.search(taxonKey = keys, limit = 5)

Ruby249

species = Gbif::Species

occ = Gbif::Occurrences

splist = ['Cyanocitta stelleri', 'Junco hyemalis', 'Aix sponsa']

keys = [species.name_suggest(x)['data'][0]['key'] for x in splist]

occ.search(taxonKey: keys, limit: 5)

Spatial search, based on well known text format (Herring, 2011), or a bounding box set of four co-250

ordinates. The well known text string and the bounding box in the below example specify the same251

rectangular area in California, centering approximately on Sacramento. Whereas the bounding box for-252

mat requires longitude SW corner, latitude SW corner, longitude NE corner, latitude NE253

corner, the well known text string requires an extra long/lat pair to close the polygon.254

17

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3304v1 | CC BY 4.0 Open Access | rec: 29 Sep 2017, publ: 29 Sep 2017

R255

well known text

wkt <- 'POLYGON((-122.6 39.9,-120.0 39.9,-120.0 37.9,-122.6 37.9,-122.6 39.9))'

occ_search(geometry = wkt, limit = 20)

bounding box

occ_search(geometry = c(-122.6,37.9,-120.0,39.9), limit = 20)

Python256

from pygbif import occurrences as occ

well known text

occ.search(geometry = 'POLYGON((30.1 10.1, 10 20, 20 40, 40 40, 30.1 10.1))', limit = 20)

bounding box

occ.search(geometry = '-125.0,38.4,-121.8,40.9', limit = 20)

Ruby257

occ = Gbif::Occurrences

well known text

occ.search(geometry: 'POLYGON((30.1 10.1, 10 20, 20 40, 40 40, 30.1 10.1))', limit: 20)

bounding box

occ.search(geometry: '-125.0,38.4,-121.8,40.9', limit: 20)

Get only occurrences with lat/long data using the hasCoordinate parameter258

R259

occ_search(hasCoordinate = TRUE, limit = 5)

Python260

from pygbif import occurrences as occ

occ.search(hasCoordinate = True, limit = 5)

Ruby261

18

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3304v1 | CC BY 4.0 Open Access | rec: 29 Sep 2017, publ: 29 Sep 2017

occ = Gbif::Occurrences

occ.search(hasCoordinate: true, limit: 5)

Get only those occurrences with spatial issues. Spatial issues are a set of issues that are returned in262

the issues field. They each indicate something different about that record. For example, the issue263

COUNTRY_COORDINATE_MISMATCH indicates that the interpreted occurrence coordinates fall outside of264

the indicated country. You can see how that might be useful when it comes to cleaning your data prior265

to analysis/visualization.266

R267

occ_search(hasGeospatialIssue = TRUE, limit = 5)

Python268

from pygbif import occurrences as occ

occ.search(hasGeospatialIssue = True, limit = 5)

Ruby269

occ = Gbif::Occurrences

occ.search(hasGeospatialIssue: true, limit: 5)

Data cleaning. GBIF provides optional data issues with each occurrence record. These issues fall into270

many different pre-defined classes, covering issues with taxonomic names, geographic data, and more271

(see rgbif::occ_issues_lookup() to find out more information on GBIF issues; and the same data272

on GBIF’s development site).273

rgbif::occ_issues() provides a way to easily filter data downloaded via rgbif::occ_search() based274

on GBIF issues.275

out <- occ_search(issue = 'DEPTH_UNLIKELY', limit = 500)

NROW(out)

#> [1] 5

out %>% occ_issues(-cudc) %>% .$data %>% NROW

#> [1] 0

19

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3304v1 | CC BY 4.0 Open Access | rec: 29 Sep 2017, publ: 29 Sep 2017

http://gbif.github.io/gbif-api/apidocs/org/gbif/api/vocabulary/OccurrenceIssue.html

There’s no equivalent interface in pygbif or gbifrb yet.276

Mapping277

An obvious downstream use case for species occurrence data is to map the data. rgbif per se is largely278

not concerned with making this easier, although we do have a simple wrapper around ggplot2 to make279

it easy to get a quick plot of occurrence data. For example, here we plot 100 occurrences for Puma280

concolor.281

key <- name_backbone(name='Puma concolor')$speciesKey

dat <- occ_search(taxonKey = key, limit = 100, hasCoordinate = TRUE)

gbifmap(dat$data)

282

Another package, mapr, is the perfect mapping companion to rgbif. It has convenient functions for283

handling input data from rgbif, spocc, or arbitrary data.frame’s, and output plots for base plots,284

ggplot2, ggmap (ggplot2 with map layers underneath), and interactive maps on GitHub gists or with285

Leaflet.js.286

There’s no equivalent interface in pygbif or gbifrb.287

20

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3304v1 | CC BY 4.0 Open Access | rec: 29 Sep 2017, publ: 29 Sep 2017

https://github.com/ropensci/mapr

GBIF data in other R packages288

We discuss usage of GBIF data in other R packages throughout the manuscript, but provide a synopsis289

here for clarity.290

taxize291

Some of the GBIF taxonomic services are also available in taxize, an R package that focuses on getting292

data from taxonomic data sources on the web. For example, with get_gbifid() one can get GBIF IDs293

used for a set of taxonomic names - then use those IDs in other functions in taxize to get additional294

information, like taxonomically downstream children.295

spocc296

GBIF occurrence data is available in the R package spocc via rgbif. spocc is a unified interface297

for fetching species occurrence data from many sources on the web. For example, a user can collect298

occurrence data from GBIF, iDigBio, and iNaturalist, and easily combine them, then use other packages299

to clean and visualize the data.300

R vs. Python vs. Ruby301

Both R and Python are commonly used in science, and can be used for similar tasks. Python, however,302

is a more general programming language, and can be used in more contexts than R can be used in.303

Ruby is used very little in science; but, like Python, Ruby is very widely used as a general purpose304

programming language, with heavy use in web development and web services.305

The three clients can do a lot of the same tasks. We envision rgbif being more common in workflows306

of academics asking research questions, whereas pygbif and gbifrb can do that as well, but may be307

more easily used in a website.308

The R client rgbif has had much more development time than pygbif and gbifrb, but with time309

pygbif and gbifrb will become equally mature.310

Use cases311

The following are three use cases for the R library rgbif: niche modeling, spatial change in biodiversity,312

and distribution mapping.313

21

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3304v1 | CC BY 4.0 Open Access | rec: 29 Sep 2017, publ: 29 Sep 2017

https://github.com/ropensci/taxize
https://github.com/ropensci/spocc

Ecological niche modeling314

In this example, we plot actual occurrence data for Bradypus species against a single predictor variable,315

BIO1 (annual mean temperature). This is only one step in a species distribution modelling workflow.316

This example can be done using BISON data as well with our rbison package.317

Load libraries318

library("sp")

library("rgbif")

library("dismo")

library("maptools")

library("dplyr")

Raster files319

Make a list of files that are installed with the dismo package, then create a rasterStack from these320

files <- list.files(paste(system.file(package = "dismo"), "/ex", sep = ""),

"grd", full.names = TRUE)

predictors <- stack(files)

Get world boundaries321

data(wrld_simpl)

Get GBIF data using the rOpenSci package rgbif322

nn <- name_lookup("bradypus*", rank = "species")

nn <- na.omit(unique(nn$data$nubKey))

df <- occ_search(taxonKey = nn, hasCoordinate = TRUE, limit = 500)

df_data <- df[sapply(df, function(x) any(class(x$data) %in% "tbl_df"))]

df_data <- dplyr::bind_rows(lapply(df_data, "[[", "data"))

df2 <- df_data %>% dplyr::select(decimalLongitude, decimalLatitude)

Plot323

22

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3304v1 | CC BY 4.0 Open Access | rec: 29 Sep 2017, publ: 29 Sep 2017

(1) Add raster data, (2) Add political boundaries, (3) Add the points (occurrences)324

plot(predictors, 1)

plot(wrld_simpl, add = TRUE)

points(df2, col = "blue")

−150 −100 −50 0

−
40

−
20

0
20

40

bio1

0
50
100
150
200
250

325

Biodiversity in big cities326

In this example, we collect specimen records across different cities using GBIF data from the rgbif327

package.328

Load libraries329

library("rgbif")

library("ggplot2")

library("plyr")

library("httr")

23

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3304v1 | CC BY 4.0 Open Access | rec: 29 Sep 2017, publ: 29 Sep 2017

library("RColorBrewer")

library("wicket")

Get bounding boxes for some cites330

Bounding lat/long data is from https://raw.github.com/amyxzhang/boundingbox-cities/master/331

boundbox.txt.332

url <- 'https://raw.githubusercontent.com/amyxzhang/

boundingbox-cities/master/boundbox.txt'

rawdat <- content(GET(sub("\n", "", url)), as = "text")

dat <- read.table(

text = rawdat, header = FALSE,

sep = "\t", col.names = c("city","minlat","maxlon","maxlat","minlon"),

stringsAsFactors = FALSE)

dat <- data.frame(

city = dat$city, minlon = dat$minlon,

minlat = dat$minlat, maxlon = dat$maxlon,

maxlat = dat$maxlat,

stringsAsFactors = FALSE

)

A helper function to get count data. GBIF has a count API, but we can’t use that with a geometry search333

as that API doesn’t support geospatial search. We can however use the search API via occ_search()334

and set limit = 1 so that we335

getdata <- function(x){

coords <- as.numeric(x[c('minlon','minlat','maxlon','maxlat')])

wkt <- wicket::wkt_correct(wicket::bounding_wkt(values = coords))

num <- occ_search(geometry = wkt, limit = 1)$meta$count

data.frame(

city = x['city'],

richness = num,

24

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3304v1 | CC BY 4.0 Open Access | rec: 29 Sep 2017, publ: 29 Sep 2017

https://raw.github.com/amyxzhang/boundingbox-cities/master/boundbox.txt
https://raw.github.com/amyxzhang/boundingbox-cities/master/boundbox.txt
https://raw.github.com/amyxzhang/boundingbox-cities/master/boundbox.txt

stringsAsFactors = FALSE

)

}

out <- apply(dat, 1, getdata)

Merge to original table336

out <- merge(dat, ldply(out), by = "city")

Add centroids from bounding boxes337

out <- transform(out, lat = (minlat + maxlat)/2, lon = (minlon + maxlon)/2)

Plot data338

mapp <- map_data('world')

ggplot(mapp, aes(long, lat)) +

geom_polygon(aes(group=group), fill="white", alpha=0, color="black", size=0.4) +

geom_point(data=out, aes(lon, lat, color=richness), size=5, alpha=0.8) +

scale_color_continuous(low = "#60E1EE", high = "#0404C8") +

labs(x="", y="") +

theme_grey(base_size=14) +

theme(legend.position = "bottom", legend.key = element_blank()) +

guides(color = guide_legend(keywidth = 2))

25

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3304v1 | CC BY 4.0 Open Access | rec: 29 Sep 2017, publ: 29 Sep 2017

−50

0

50

−100 0 100 200

richness 1e+06 2e+06 3e+06

339

Valley oak occurrence data comparison340

This example is inspired by a tweet from Antonio J. Perez-Luque who shared his plot on Twitter.341

Antonio compared the occurrences of Valley Oak (Quercus lobata) from GBIF to the distribution of the342

same species from the Atlas of US Trees.343

The data in question from the example above is no longer available, so below we use a different species.344

Load libraries345

library('rgbif')

library('raster')

library('sp')

library('sf')

library('rgeos')

library('scales')

library('rnaturalearth')

26

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3304v1 | CC BY 4.0 Open Access | rec: 29 Sep 2017, publ: 29 Sep 2017

https://twitter.com/ajpelu
https://twitter.com/ajpelu/status/473951167567757312
http://www.gbif.org/
http://esp.cr.usgs.gov/data/little/

Get GBIF Data for Fraxinus excelsior346

keyFe <- name_backbone(name = 'Fraxinus excelsior', kingdom = 'plants')$speciesKey

dat.Fe <- occ_search(taxonKey = keyFe, return = 'data', limit = 10000L)

Get Distribution map of F. excelsior European Forest Genetic Resources Programme347

From http://www.euforgen.org/species/fraxinus-excelsior/. And save shapefile in same directory348

url <- 'http://www.euforgen.org/fileadmin/templates/euforgen.org/upload/Documents/Maps/Shapefile/Fraxinus_excelsior.zip'

tmp <- tempdir()

download.file(url, destfile = "fraxinus_excelsior.zip")

unzip("fraxinus_excelsior.zip", exdir = tmp)

fe <- sf::read_sf(file.path(tmp, "Fraxinus_excelsior_EUFORGEN.shp"))

Get Elevation data of US349

eur <- rnaturalearth::ne_countries(continent = "europe", type = "map_units")

eur1 <- eur[eur$sovereignt != "Russia",]

Plot map350

plot(eur1, col = "darkgrey", legend = FALSE,

main = 'Distribution of Fraxinus excelsior')

add distribution range layer

plot(fe, add = TRUE, col = alpha("white", 0.5), border = FALSE)

add Gbif presence points

points(dat.Fe$decimalLongitude, dat.Fe$decimalLatitude,

cex = .7, pch = 19, col = alpha("darkgreen", 0.8))

legend(x = 38, y = 81, c("GBIF Data", "Range Layer"), pch = 19, bg = "grey",

col = c('darkgreen', alpha("white", 0.5)), pt.cex = 1, cex = .8)

27

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3304v1 | CC BY 4.0 Open Access | rec: 29 Sep 2017, publ: 29 Sep 2017

http://www.euforgen.org/species/fraxinus-excelsior/

Distribution of Fraxinus excelsior

GBIF Data
Range Layer

351

Conclusions and future directions352

The rgbif, pygbif, and gbibrb libraries provide programmatic interfaces to GBIF’s application353

programming interface (API) - a powerful tool for working with species occurrence data, and facilitating354

reproducible research. In fact, the rgbif package has already been used in more than 20 scholarly355

publications (as of 2016-08-10), including (Amano, Lamming & Sutherland, 2016, Bartomeus et al.356

(2013), Barve (2014), Bone et al. (2015), Collins et al. (2015), Drozd & Šipoš (2013), Kong, Huang &357

Duan (2015), Richardson, Roux & Wilson (2015), Turner, Fréville & Rieseberg (2015), Verheijen et al.358

(2015), Zizka & Antonelli (2015), Butterfield et al. (2016), Dellinger et al. (2015), Feitosa et al. (2015),359

Malhado et al. (2015), Werner et al. (2015), Robertson, Visser & Hui (2016), Davison et al. (2015),360

Janssens et al. (2016)).361

The rgbif package is relatively stable, and should not have many breaking changes unless necessitated362

due to changes in the GBIF API. However, it will gain function(s) to work with the maps API in the363

near future.364

28

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3304v1 | CC BY 4.0 Open Access | rec: 29 Sep 2017, publ: 29 Sep 2017

The pygbif and gbifrb libraries are in early development, and will greatly benefit from any feedback365

and use cases.366

One area of focus in the future is to attempt to solve many use cases that have been brought up with367

respect to GBIF data. For example, some specimens are included in GBIF that are located in botanical368

gardens. For many research questions, researchers are interested in “wild” type occurrences, not those369

in human curated scenarios. Making removal of these occurrences easy would be very useful, but is370

actually quite a hard problem. There are many other problems like this, for which these three libraries371

will help in making more efficient and reproducible.372

Acknowledgments373

This project was supported in part by the Alfred P Sloan Foundation (Grant No. G-2014-13485), and374

in part by the Helmsley Foundation (Grant No. 2016PG-BRI004).375

Data Accessibility376

All scripts and data used in this paper can be found in the permanent data archive Zenodo under377

the digital object identifier (https://doi.org/10.5281/zenodo.997554). This DOI corresponds to a378

snapshot of the GitHub repository at https://github.com/sckott/gbifms that matches this preprint.379

Software can be found at https://github.com/ropensci/rgbif, https://github.com/sckott/pygbif, and380

https://github.com/sckott/gibfrb, all under MIT licenses. We thank all the users that have used rgbif,381

pygbif, and gbifrb and have given feedback and reported bugs. In addition, we greatly appreciate all382

the contributors to the three libraries, found at https://github.com/ropensci/rgbif/graphs/contributors,383

https://github.com/sckott/pygbif/graphs/contributors, and https://github.com/sckott/gbifrb/graphs/384

contributors.385

References386

Amano T., Lamming JDL., Sutherland WJ. 2016. Spatial gaps in global biodiversity information and387

the role of citizen science. BioScience 66:393–400.388

Bartomeus I., Park MG., Gibbs J., Danforth BN., Lakso AN., Winfree R. 2013. Biodiversity ensures389

29

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3304v1 | CC BY 4.0 Open Access | rec: 29 Sep 2017, publ: 29 Sep 2017

https://doi.org/10.5281/zenodo.997554
https://github.com/sckott/gbifms
https://github.com/ropensci/rgbif
https://github.com/sckott/pygbif
https://github.com/sckott/gibfrb
https://github.com/ropensci/rgbif/graphs/contributors
https://github.com/sckott/pygbif/graphs/contributors
https://github.com/sckott/gbifrb/graphs/contributors
https://github.com/sckott/gbifrb/graphs/contributors
https://github.com/sckott/gbifrb/graphs/contributors

plant-pollinator phenological synchrony against climate change. Ecology Letters 16:1331–1338.390

Barve V. 2014. Discovering and developing primary biodiversity data from social networking sites: A391

novel approach. Ecological Informatics 24:194–199.392

Beck J., Ballesteros-Mejia L., Buchmann CM., Dengler J., Fritz SA., Gruber B., Hof C., Jansen393

F., Knapp S., Kreft H., Schneider A-K., Winter M., Dormann CF. 2012. Whats on the horizon for394

macroecology? Ecography 35:673–683.395

Bone RE., Smith JAC., Arrigo N., Buerki S. 2015. A macro-ecological perspective on crassulacean acid396

metabolism (CAM) photosynthesis evolution in afro-madagascan drylands: Eulophiinae orchids as a397

case study. New Phytologist 208:469–481.398

Brown JH. 1995. Macroecology. University of Chicago Press.399

Brown KA., Parks KE., Bethell CA., Johnson SE., Mulligan M. 2015. Predicting plant diversity patterns400

in madagascar: Understanding the effects of climate and land cover change in a biodiversity hotspot.401

PLOS ONE 10:e0122721.402

Butterfield BJ., Copeland SM., Munson SM., Roybal CM., Wood TE. 2016. Prestoration: Using species403

in restoration that will persist now and into the future. Restor Ecol.404

Ceballos G., Ehrlich PR., Barnosky AD., Garcia A., Pringle RM., Palmer TM. 2015. Accelerated405

modern human-induced species losses: Entering the sixth mass extinction. Science Advances 1:e1400253–406

e1400253.407

Chamberlain S., Ram K., Barve V., Mcglinn D. rgbif: An r interface to the global ’biodiversity’408

information facility API.409

Chamberlain S. pygbif: A python interface to the global biodiversity information facility API.410

Chamberlain S. gbifrb: A ruby interface to the global biodiversity information facility API.411

Collins R., Ribeiro ED., Machado VN., Hrbek T., Farias I. 2015. A preliminary inventory of the catfishes412

of the lower rio nhamundá, brazil (ostariophysi, siluriformes). BDJ 3:e4162.413

Davison J., Moora M., Opik M., Adholeya A., Ainsaar L., Ba A., Burla S., Diedhiou AG., Hiiesalu414

I., Jairus T., Johnson NC., Kane A., Koorem K., Kochar M., Ndiaye C., Partel M., Reier U., Saks415

U., Singh R., Vasar M., Zobel M. 2015. Global assessment of arbuscular mycorrhizal fungus diversity416

reveals very low endemism. Science 349:970–973.417

Dellinger AS., Essl F., Hojsgaard D., Kirchheimer B., Klatt S., Dawson W., Pergl J., Pyšek P., Kleunen418

30

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3304v1 | CC BY 4.0 Open Access | rec: 29 Sep 2017, publ: 29 Sep 2017

M van., Weber E., Winter M., Hörandl E., Dullinger S. 2015. Niche dynamics of alien species do not419

differ among sexual and apomictic flowering plants. New Phytologist 209:1313–1323.420

Drozd P., Šipoš J. 2013. R for all (i): Introduction to the new age of biological analyses. Casopis421

slezskeho zemskeho muzea (A) 62.422

Faulkner KT., Robertson MP., Rouget M., Wilson JR. 2014. A simple, rapid methodology for developing423

invasive species watch lists. Biological Conservation 179:25–32.424

Febbraro MD., Lurz PWW., Genovesi P., Maiorano L., Girardello M., Bertolino S. 2013. The use of425

climatic niches in screening procedures for introduced species to evaluate risk of spread: A case with426

the american eastern grey squirrel. PLoS ONE 8:e66559.427

Feitosa YO., Absy ML., Latrubesse EM., Stevaux JC. 2015. Late quaternary vegetation dynamics from428

central parts of the madeira river in brazil. Acta Bot. Bras. 29:120–128.429

Ferretti F., Verd GM., Seret B., Šprem JS., Micheli F. 2015. Falling through the cracks: The fading430

history of a large iconic predator. Fish and Fisheries:n/a–n/a.431

Ficetola GF., Rondinini C., Bonardi A., Baisero D., Padoa-Schioppa E. 2014. Habitat availability for432

amphibians and extinction threat: A global analysis. Diversity and Distributions 21:302–311.433

Herring J. 2011. OpenGIS implementation standard for geographic information-simple feature access-434

part 1: Common architecture. OGC Document 4:122–127.435

Janssens SB., Vandelook F., Langhe ED., Verstraete B., Smets E., Vandenhouwe I., Swennen R. 2016.436

Evolutionary dynamics and biogeography of musaceae reveal a correlation between the diversification437

of the banana family and the geological and climatic history of southeast asia. New Phytologist438

210:1453–1465.439

Kong X., Huang M., Duan R. 2015. SDMdata: A web-based software tool for collecting species440

occurrence records. PLOS ONE 10:e0128295.441

Malhado AC., Oliveira-Neto JA., Stropp J., Strona G., Dias LC., Pinto LB., Ladle RJ. 2015. Climato-442

logical correlates of seed size in amazonian forest trees. J Veg Sci 26:956–963.443

María Mendoza., Ospina OE., Cárdenas-Henao H., García-R JC. 2015. A likelihood inference of444

historical biogeography in the world’s most diverse terrestrial vertebrate genus: Diversification of445

direct-developing frogs (craugastoridae: Pristimantis) across the neotropics. Molecular Phylogenetics446

31

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3304v1 | CC BY 4.0 Open Access | rec: 29 Sep 2017, publ: 29 Sep 2017

and Evolution 85:50–58.447

Pimm SL., Jenkins CN., Abell R., Brooks TM., Gittleman JL., Joppa LN., Raven PH., Roberts CM.,448

Sexton JO. 2014. The biodiversity of species and their rates of extinction, distribution, and protection.449

Science 344:1246752–1246752.450

R Core Team. 2014. R: A language and environment for statistical computing. Vienna, Austria: R451

Foundation for Statistical Computing.452

Richardson DM., Roux JJL., Wilson JR. 2015. Australian acacias as invasive species: Lessons to be453

learnt from regions with long planting histories. Southern Forests: a Journal of Forest Science 77:31–39.454

Robertson MP., Visser V., Hui C. 2016. Biogeo: An r package for assessing and improving data quality455

of occurrence record datasets. Ecography 39:394–401.456

Turner KG., Fréville H., Rieseberg LH. 2015. Adaptive plasticity and niche expansion in an invasive457

thistle. Ecol Evol 5:3183–3197.458

Verheijen LM., Aerts R., Bönisch G., Kattge J., Bodegom PMV. 2015. Variation in trait trade-offs459

allows differentiation among predefined plant functional types: Implications for predictive ecology. New460

Phytologist 209:563–575.461

Werner GDA., Cornwell WK., Cornelissen JHC., Kiers ET. 2015. Evolutionary signals of symbiotic462

persistence in the legumerhizobia mutualism. Proceedings of the National Academy of Sciences 112:10262–463

10269.464

Zizka A., Antonelli A. 2015. speciesgeocodeR: An r package for linking species occurrences, user-defined465

regions and phylogenetic trees for biogeography, ecology and evolution. Cold Spring Harbor Laboratory466

Press.467

32

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3304v1 | CC BY 4.0 Open Access | rec: 29 Sep 2017, publ: 29 Sep 2017

	Introduction
	Global Biodiversity Information Facility
	The clients
	rgbif
	pygbif
	gbifrb
	Library interfaces

	GBIF headers
	Registry
	Datasets
	Networks, nodes, and installations

	Taxonomic names
	GBIF Backbone
	Name searching

	Occurrences
	Download API
	Search API

	Mapping
	GBIF data in other R packages
	taxize
	spocc

	R vs. Python vs. Ruby
	Use cases
	Ecological niche modeling
	Biodiversity in big cities
	Valley oak occurrence data comparison

	Conclusions and future directions
	Acknowledgments
	Data Accessibility
	References

